Dernière mise à jour : 21 fév. 2005

Exercices chapitre 13

Moteur DC, généralités Moteur à excitation séparée Moteur série

Génératrice à excitation séparée

Moteur pas-à-pas

Moteur DC, généralités

1.	Comment peut-on inverser le sens de rotation d'un moteur DC à excitation séparée (citer toutes les possibilités)		
	(citer toutes ies possionites)		
Répo	onse(s): en inversant le sens du courant dans l'induit ou dans l'inducteur	S	P
2.	Quel est le rôle des pôles de commutation ?		
_	onse(s): Créer un flux magnétique de sens opposé et proportionnel au flux généré par uit dans le but de maintenir le flux résultant dans un axe neutre	S	P
3.	Par quel courant sont traversés les pôles de commutation et où sont-ils placés ?		
<i>J</i> .	Utiliser un dessin pour vos explications.		
Répo	onse(s) Ils sont traversés par les courants d'induits. Ils sont situés sur l'axe neutre	S	<u></u>
4.	Pourquoi et comment limite t-on le courant au démarrage d'un moteur DC ?		
_	onse(s): Pour éviter des courants élevés. A l'aide d'un rhéostat de démarrage placé en et avec l'induit et un second rhéostat de démarrage placé en série avec l'inducteur	S	P
5.	D'où provient la FCEM d'un moteur DC ?		
	onse(s): La FCEM est crée par le passage des conducteurs de l'induit devant les lignes hamps de l'inducteur	S	P
6.	Enumérer toutes les pertes d'un moteur série. Spécifier où elles sont perdues.		
Répo	onse(s):	S	<u></u>
	nducteur: perte cuivre (effet Joule)		
	nduit: perte cuivre (effet Joule); perte fer (hystérésis + Foucault)		
	anique: frottement, ventilation		
7.	Que se passe-t-il si le courant de l'induit reste constant et que le courant d'inducteur diminue ?		
Répo	onse(s): Le moteur prend de la vitesse	S	P
8.	Que se passe-t-il si le courant d'inducteur est coupé ?		
Répo	onse(s): Le moteur part en survitesse	S	P
9.	Comment peut-on varier la vitesse d'un moteur DC à excitation séparée ?		
	Donner 2 possibilités		
Répo	onse(s): En variant la tension aux bornes de l'induit.	S	P
	En diminuant le courant dans l'inducteur		
10.	Vous devez commander un moteur pour un tramway. Quel moteur choisissez-vous?		
Répo	Pnse(s): Un moteur série (universel) car il a un très fort couple au démarrage	S	P
11.	Vous devez commander un moteur pour une machine outil. La vitesse doit être le plus stable possible. Quel moteur choisissez-vous ?		
Répo	onse(s): Un moteur à excitation séparée. car sa vitesse varie très peu.	S	P

12.	Si l'on admet qu'un moteur DC universel tourne dans le sens horaire, quel sera le sens de rotation si on inverse la polarité à ses bornes ?		
Répe	onse(s): horaire, il ne change pas	S	P

Retour au haut de la page

Moteur à excitation séparée

	r à excitation séparée	1
13.	Un moteur, alimenté sous 300 V continu, a une FCEM E' de 284V en fonctionnement	
	normal. La résistance de l'induit est $\mathbf{Ri} = 0.5 \Omega$.	
	Calculer:	
	a) La chute de tension Ui dans l'induit.	
	b) L'intensité Iabs du courant absorbé.	
	c) L'intensité I dém qui serait absorbée au démarrage si le moteur était	
	dépourvu de rhéostat.	
	d) La résistance Rh du rhéostat de démarrage pour que l'intensité au	
	démarrage soit limitée à 1,8 fois l'intensité en charge nominale.	
Répo	onse(s): a) 16V; b) 32A; c) 600A; d) 4,71 ohms	JB
14.	Un moteur à courant continu fonctionne en charge nominale sous 12 V. L'intensité	
	qui le traverse est de 2,3 A. Sa résistance interne vaut $0,74 \Omega$.	
	Calculer la valeur de la résistance de démarrage qui permet de ne pas dépasser 2,5	
	fois le courant nominal à l'enclenchement.	
	iois le courant nominar à l'encienchement.	
Répo	onse(s): $R_{d\acute{e}marrage} = 1,35 \Omega$	SP
15.	Un moteur à courant continu, alimenté sous 230 V, possède une FCEM de 176 V en	
	fonctionnement normal. L'induit a une résistance de 0.9Ω .	
	Calculer: Le courant d'induit	
	La valeur du courant de démarrage	
	La valeur du rhéostat de démarrage si la pointe de courant ne doit	
	pas dépasser 2 I _N	
Répo	onse(s): $I_N = 60 A$; $I_{démarrage} = 256 A$; $R_{Rhéostat} = 1,02 \Omega$	SP
16.	Un moteur à excitation séparée possède les caractéristiques suivantes :	
10.	Induit: $230 \text{ V} - 1{,}15 \Omega$	
	Inducteur: $170 \text{ V} - 350 \Omega$	
	En charge nominale, l'induit est traversé par une intensité de 5,3 A. Calculer :	
	le courant dans l'inducteur	
	la FCEM du moteur	
	 la valeur du rhéostat de démarrage si la pointe de courant ne doit 	
	pas dépasser 2,5 I _n	
Róne	onse(s): $I_{Ind.}$ = 0,49A, $FCEM$ =223,9 V; $R_{Rh\acute{e}ostat}$ =16,2 Ω	SP
17.	Un petit moteur DC à aimants permanents, dont la résistance interne vaut 6 Ω , tourne	<u> </u>
1/.	à 1800 tr/min en charge nominale. Il est traversé par un courant 2 A sous 24 V.	
	Calculer sa fréquence de rotation à vide, s'il est alors parcouru par un courant de 0,5	
	A.	
Répo	onse(s): $n_o = 3150 \text{ tr/min}$	SP
18.	Un moteur DC 24V à aimant permanent a une résistance interne de 4,5 Ω . A vide le	
	courant est de 0,45 A et sa vitesse de 3500 tr/min. En charge la vitesse est de 2500	
	tr/min. Quel est le courant en charge?	
	,	
Réna	pnse(s): I=1,85A	SP

19.	Un moteur à courant continu, dont l'excitation indépendante est maintenue constante, fonctionne en charge sous 230 V. L'intensité qui le traverse est de 10 A et il tourne à 1500 tr/min. Sa résistance interne vaut 0,3 Ω . Calculer sa fréquence de rotation lorsqu'il est traversé par un courant de 65 A sous 230 V.		
Répo	onse(s): n=1391 tr/min	SP	
	T		
20.	Un moteur à courant continu, alimenté sous 230 V, possède une FCEM de 176 V en		
	fonctionnement nominal. L'induit a une résistance de 0.9Ω .		
	Calculer:		
	a) Le courant d'induit		
	b) La valeur du courant de démarrage sans résistance de démarrage		
	c) La valeur de la résistance de démarrage permettant de ne pas dépasser une pointe		
	de courant égale à deux fois le courant nominal.		
Rép	onse(s): I_{induit} = 60 A; $I_{démar.}$ =255,6 A; $R_{Rh\acute{e}ostat}$ = 1,02 Ω	SP	

Moteur série

21.	Un moteur DC série est alimenté par une batterie au plomb de 12 V, dont la résistance interne est de 25 m Ω . En fonctionnement à 1300 tr/min, il est traversé par un courant de 80 A. Au démarrage le courant vaut 240 A. Calculer la résistance interne du moteur et la tension aux bornes du moteur.	
Répo	$onse(s): R_i = 25 \ m\Omega; \ U = 10 \ V$	SP
22.	Un palan est entraîné par un moteur DC série alimenté sous 110 V. La résistance de l'induit vaut $0.8~\Omega$ et celle de l'inducteur $0.5~\Omega$. En charge le moteur est traversé par un courant de $7.8~\Lambda$ et tourne à $250~\text{tr/min}$. A vide le moteur est traversé par un courant de $3.5~\Lambda$. Calculer sa fréquence de rotation à vide.	
Répo	$pnse(s): f = 588,4 \ tr/min$	SP
23.	Un moteur DC série est alimenté par une batterie de 24 V dont la résistance est de $100 m\Omega$. En charge le moteur tourne à une vitesse de 2000 tr/min et le courant est de 40 A. Le moteur a une constante $K=N*\Phi=360*10^{-3}$ Quelle est la résistance interne du moteur ?	
Répo	$onse(s)$: $R_{im}=200 \ m\Omega$	SP
24.	Un moteur DC série est alimenté par une batterie au plomb dont la FEM est de12 V et la résistance interne de 20 mΩ. En fonctionnement, à 1800 tr/min, il est traversé par un courant de 100 A. Au démarrage, la pointe de courant vaut 350 A. Calculer: a) La résistance interne du moteur. b) La tension aux bornes du moteur en fonctionnement normal. c) Le couple utile sachant que le couple de frottement est de 0,7 Nm.	
Répo	onse(s): a) $R_i = 14.3 \text{ m}\Omega$; $U_{mot} = 10 \text{ V}$; $M_c = 4.55 \text{ Nm}$	SP

Génératrice à excitation séparée

25.	Pour un courant d'excitation de 4 A, la f.é.m. constante d'une génératric	e à excitation
	séparée est E = 240 V. La résistance d'induit Ri = 0,8 Ω , celle de l'induc	cteur Rind =
	30Ω . Les pertes collectives sont Pc = 450 W. Pour un courant débité I =	= 80 A,
	calculer:	
	a) La tension U.	
	b) La puissance utile Pu .	
	c) Les pertes par effet Joule dans l'induit Pi.	
	d) Les pertes par effet Joule dans l'inducteur Pind .	
	e) La puissance absorbée Pa.	
	f) Le rendement η	
	·	
Rép	ponse(s): a) 176V; b) 14,1 kW; c) 5120 W; d) 480W; e) 20,13 kW; f) 0,699) JB
26.	On veut charger une batterie au Pb de capacité 71 Ah, Rés. int. Rint 0,1 à vide 12 V. On utilise une dynamo shunt dont la résistance d'induit Ri moins que celle, Rind , de l'inducteur. La batterie est initialement vide. I recharge total est de 10 h.	vaut 100 fois
	Calculer la tension U aux bornes de la batterie, la f.é.m. E de la dynamo	et le couple
	mécanique M à fournir sachant que le couple de frottement Mfr est de 0	-
	que l'arbre de la génératrice est entraîné à 1500 tr/min. La résistance d'in	
	$0,65\Omega$.	
Rép	ponse(s): $U = 13.1 \text{ V}$; $E = 17.8 \text{ V}$; $M = 0.868 \text{ Nm}$	JB

Moteur pas-à-pas

27.	Compléter le schéma suivant pour réaliser une commande bipolaire.	
- / .	L1	
	T2 T4	
	N	
	Ensuite mentionner les transistors qui seront activés simultanément	
Répo	onse(s): T1 & T4; T3 & T2	SP
28.	Compléter le schéma suivant pour réaliser une commande unipolaire.	1
	L1	
	- 	
	T1	
	N	
	Ensuite mentionner les transistors qui seront activés simultanément	
Répo	onse(s): T1 & T3; T2 & T4	SP
29.	Qu'est ce qu'un moteur à réluctance variable ?	
Répo	onse(s): C'est un moteur dont le rotor n'est pas polarisé. Il n'a pas de couple à l'arrêt	SP
30.	Combien de pas par tour ont ces moteurs ?	1
	a) b)	1
	a de la latina de latina de la latina de la latina de la latina de latina de la latina de la latina de la latina de la latina de latina de la latina de latina de la latina de lati	
	TO THE RESERVE TO THE	
	A. S	
	B' B'	
	B A	
Répo	onse(s): a) 24 pas b) 8 pas	SP
31.	Quelle possibilité existe pour augmenter la résolution d'un moteur pas-à-pas ?	
Réno	onse(s): Avancer par demi-pas en commutant judicieusement les phases statoriques	SP
		~-

32.	Indiquer la séquence d'allumage des transistors de puissance permettant de faire avancer ce moteur de quatre pas dans le sens anti-horaire. Le premier pas correspond à la position 1 ci-contre.	
Répo	onse(s): T1&T4 T1&T3 T2 & T3; T2 & T4	SP
33.	Le moteur ci-contre est un O Moteur électromagnétique	
	O Moteur hybride	
	O Moteur à reluctance variable	
	cocher la bonne réponse!	
Répo	onse(s): Moteur à reluctance variable	SP
34.	Le moteur ci-contre est un O Moteur électromagnétique O Moteur à reluctance variable O Moteur hybride cocher la bonne réponse!	
	onse(s): Moteur électromagnétique	SP
35.	O Moteur à reluctance variable O Moteur hybride O Moteur électromagnétique cocher la bonne réponse!	
D :	anga(g). Mataun hubuida	SP
Rone	onse(s): Moteur hybride	1 SP

36.	Quel est le principal inconvénient d'un moteur pas-à-pas ?		
Répo	onse(s): Possibilité de perdre des pas en cas de surcharge ou d'accélération trop élevée	S	P